3.328 \(\int (a+a \sin (e+f x))^2 (A+B \sin (e+f x)) (c+d \sin (e+f x))^n \, dx\)

Optimal. Leaf size=221 \[ -\frac {4 \sqrt {2} a^2 (A-B) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};-\frac {3}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {\sin (e+f x)+1}}-\frac {8 \sqrt {2} a^2 B \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};-\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {\sin (e+f x)+1}} \]

[Out]

-8*a^2*B*AppellF1(1/2,-n,-5/2,3/2,d*(1-sin(f*x+e))/(c+d),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(c+d*sin(f*x+e))^n*2^(
1/2)/f/(((c+d*sin(f*x+e))/(c+d))^n)/(1+sin(f*x+e))^(1/2)-4*a^2*(A-B)*AppellF1(1/2,-n,-3/2,3/2,d*(1-sin(f*x+e))
/(c+d),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(c+d*sin(f*x+e))^n*2^(1/2)/f/(((c+d*sin(f*x+e))/(c+d))^n)/(1+sin(f*x+e))
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 221, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {2987, 2784, 139, 138} \[ -\frac {4 \sqrt {2} a^2 (A-B) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};-\frac {3}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {\sin (e+f x)+1}}-\frac {8 \sqrt {2} a^2 B \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} F_1\left (\frac {1}{2};-\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{f \sqrt {\sin (e+f x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^2*(A + B*Sin[e + f*x])*(c + d*Sin[e + f*x])^n,x]

[Out]

(-8*Sqrt[2]*a^2*B*AppellF1[1/2, -5/2, -n, 3/2, (1 - Sin[e + f*x])/2, (d*(1 - Sin[e + f*x]))/(c + d)]*Cos[e + f
*x]*(c + d*Sin[e + f*x])^n)/(f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n) - (4*Sqrt[2]*a^2*(A -
B)*AppellF1[1/2, -3/2, -n, 3/2, (1 - Sin[e + f*x])/2, (d*(1 - Sin[e + f*x]))/(c + d)]*Cos[e + f*x]*(c + d*Sin[
e + f*x])^n)/(f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2784

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[(a^m*Cos[e + f*x])/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]]), Subst[Int[((1 + (b*x)/a)^(m - 1/2)*(c
 + d*x)^n)/Sqrt[1 - (b*x)/a], x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0]
 && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m]

Rule 2987

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x
], x] + Dist[B/b, Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f,
A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int (a+a \sin (e+f x))^2 (A+B \sin (e+f x)) (c+d \sin (e+f x))^n \, dx &=(A-B) \int (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx+\frac {B \int (a+a \sin (e+f x))^3 (c+d \sin (e+f x))^n \, dx}{a}\\ &=\frac {\left (a^2 (A-B) \cos (e+f x)\right ) \operatorname {Subst}\left (\int \frac {(1+x)^{3/2} (c+d x)^n}{\sqrt {1-x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}+\frac {\left (a^2 B \cos (e+f x)\right ) \operatorname {Subst}\left (\int \frac {(1+x)^{5/2} (c+d x)^n}{\sqrt {1-x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}\\ &=\frac {\left (a^2 (A-B) \cos (e+f x) (c+d \sin (e+f x))^n \left (-\frac {c+d \sin (e+f x)}{-c-d}\right )^{-n}\right ) \operatorname {Subst}\left (\int \frac {(1+x)^{3/2} \left (-\frac {c}{-c-d}-\frac {d x}{-c-d}\right )^n}{\sqrt {1-x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}+\frac {\left (a^2 B \cos (e+f x) (c+d \sin (e+f x))^n \left (-\frac {c+d \sin (e+f x)}{-c-d}\right )^{-n}\right ) \operatorname {Subst}\left (\int \frac {(1+x)^{5/2} \left (-\frac {c}{-c-d}-\frac {d x}{-c-d}\right )^n}{\sqrt {1-x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {1+\sin (e+f x)}}\\ &=-\frac {8 \sqrt {2} a^2 B F_1\left (\frac {1}{2};-\frac {5}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{f \sqrt {1+\sin (e+f x)}}-\frac {4 \sqrt {2} a^2 (A-B) F_1\left (\frac {1}{2};-\frac {3}{2},-n;\frac {3}{2};\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{f \sqrt {1+\sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 26.08, size = 0, normalized size = 0.00 \[ \int (a+a \sin (e+f x))^2 (A+B \sin (e+f x)) (c+d \sin (e+f x))^n \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + a*Sin[e + f*x])^2*(A + B*Sin[e + f*x])*(c + d*Sin[e + f*x])^n,x]

[Out]

Integrate[(a + a*Sin[e + f*x])^2*(A + B*Sin[e + f*x])*(c + d*Sin[e + f*x])^n, x]

________________________________________________________________________________________

fricas [F]  time = 0.53, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-{\left ({\left (A + 2 \, B\right )} a^{2} \cos \left (f x + e\right )^{2} - 2 \, {\left (A + B\right )} a^{2} + {\left (B a^{2} \cos \left (f x + e\right )^{2} - 2 \, {\left (A + B\right )} a^{2}\right )} \sin \left (f x + e\right )\right )} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))^n,x, algorithm="fricas")

[Out]

integral(-((A + 2*B)*a^2*cos(f*x + e)^2 - 2*(A + B)*a^2 + (B*a^2*cos(f*x + e)^2 - 2*(A + B)*a^2)*sin(f*x + e))
*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{2} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))^n,x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^2*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

maple [F]  time = 3.87, size = 0, normalized size = 0.00 \[ \int \left (a +a \sin \left (f x +e \right )\right )^{2} \left (A +B \sin \left (f x +e \right )\right ) \left (c +d \sin \left (f x +e \right )\right )^{n}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))^n,x)

[Out]

int((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))^n,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{2} {\left (d \sin \left (f x + e\right ) + c\right )}^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))^n,x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^2*(d*sin(f*x + e) + c)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^2*(c + d*sin(e + f*x))^n,x)

[Out]

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^2*(c + d*sin(e + f*x))^n, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**2*(A+B*sin(f*x+e))*(c+d*sin(f*x+e))**n,x)

[Out]

Timed out

________________________________________________________________________________________